TOTAL RECORDER OF THE RECORDER

Paul Cassak
Advisor – Jim Drake
University of Maryland – College Park
2003 HPC Summer School

Solar Flares

http://science.msfc.nasa.gov/ssl/pad/solar/flares.htm

Magnetohydrodynamics

Magnetic Pressure

Magnetic Tension (Curvature)

"Alfvén waves" travel at speed

$$c_{\scriptscriptstyle A} = \sqrt{\frac{B^2}{\Box_0\Box}}$$

General Mechanism

Strong observational and experimental support

Sweet-Parker Model

Solar Flare Mechanism

Another Application - Magnetospheric Physics

A Problem with Sweet-Parker

Scaling analysis $\Box v_{in} (\Box)^{1/2} v_{out}$

For a solar flare, Time (SP Theory) $\sim 10^7$ sec Time (Observed) $\sim 10^3$ sec

For a substorm,
Time (SP Theory) ~
Time (Observed) ~ 30 min

Fix #1 – "Collisionless reconnection"

Kinetic Theory [] Generalized Ohm's Law

Hall Effect [] Whistler waves [] Fast Reconnection

Fix #2 – "Anomalous resistivity"

Sweet-Parker would agree with observation if □_{anomalous} » □_{classical}.

But, what causes it and how? Turbulence?

Problem #2 with Sweet-Parker

Sweet-Parker is manifestly a 2 _ D theory – what happens in 3D?

Current Research

The Code:

- Multiple capabilities
 - MHD / 2 fluid
 - 1 fluid + 1 particle (hybrid)
 - full particle
 - switches for kinetic effects
 - 2 or 3 dimensions
- Periodic boundary conditions
- Fully Relativistic
- Explicit time-stepping
 - trapezoidal leapfrog
- Massively parallel

The Computer

- Lawrence Berkeley National Laboratory
- > NERSC IBM SP RS/6000 (Seaborg)
- > 380 compute nodes (6,080 processors)
- Peak performance 1.5 GFlops/sec
- Total Disk Storage 44 Terabytes

2D Simulations

2 1/2 D Hall MHD Strong Guide Field $(B_{a} = 5B_{0})$ **Coherent Initial** Perturbation 256 x 128 $w_0 = 0.2$ dt = 0.0025dx = dy = 0.02

z component of the current, J_z

x component of the ion current, Jiz

3D Simulations

3D Hall MHD Strong Guide Field $(B_{q} = 5B_{0})$ "Random" Initial Perturbation 256 x 128 x 64 $w_0 = 0.2$ dt = 0.0025dx = dy = 0.02dz = 0.4

z component of the current, J_z

x component of the ion current, Jiz

Combinesions

- Reconnection is an important and ubiquitous physical phenomenon that allows for the explosive conversion of magnetic energy to kinetic energy.
- Much understanding has been obtained, but much work remains, including theoretical, experimental, astronomical observation and computational.

Dedicated to:

Marco Antonio Cândido Ribeiro